Biomass Feedstock: Field to Facility Supply

Advanced Biomass Workshop
Michael Reese
West Central Research & Outreach Center
November 15, 2007
Overview:

1. Agricultural Research Station
2. Serve as Living Lab and Public Access Point
3. Developing Community Scale Renewable Energy Systems
4. Focus on Local Ownership
Overview

Community-Scale Renewable Energy Systems:

- Hybrid Wind System
- Biomass Gasification System
- Community Biogas System
- Renewable Energy / Green Office Building

Practical production systems with research and demonstration platforms

“Destination Renewable Energy Research & Demonstration Systems”
Biomass Feedstock Challenges:

- Type / Crop,
- Harvest,
- Storage,
- Processing,
- Densification,
- Transportation, and
- Utilization.
Biomass Feedstock Challenges:

- **Utilization – Two main routes**
 - **Sugar Platform / Fermentation**
 - Larger scale (regional)
 - Very defined feedstock (less flexible)
 - Needs very clean feedstock
 - High water requirement
 - **Thermo Chemical / Gasification / Pyrolysis**
 - Can be smaller scale (localized)
 - Offers greater feedstock flexibility
Biomass Feedstock Challenges:

- **Type / Crop:**
 - Corn Stover
 - Small Grain Straw
 - Grasses and Forbs
 - Alfalfa
 - Woody plants
 - Livestock Wastes – Bedding and Manure
 - Co-products – DDGS, etc
Crop Residues: Corn Stover and Straw
Grasses and Forbs
Alfalfa and Other Energy Crops
Co-Products
Biomass Feedstock Challenges:

- **Harvest**
 - Conventional
 - Single Pass
Harvest: Corn Stover

Raking Windrows

Round Baling
Two Pass Harvest
Single Pass Harvest

Single Stream
Single Pass Harvest

Two Streams
Single Pass Harvest

Three Streams
Single Pass Harvest: Willow
Single Pass Harvest: Miscanthus
Forage Harvest
Storage
Processing & Densification

Large round hay bales have a density of 10 to 12 pounds per cubic foot, but cornstalk bales contain only about 7 to 8 pounds per cubic foot.

-William Edward, ISU
Processing & Densification

1. Preprocess / Grind
 Dry
 Densification
 Pellet
 Briquette
 Other

Why Densification?
- Transport more per truck load
- Storage – Simplifies and increases shelf life
- Allows for mixing
- Simplifies delivery to gasifier / fermenter
- Standardization
Processing & Densification

2. Other Options:

 Liquefaction
 - On-farm processing
 - In-field processing

 Bio-methane
 - Inject into NG pipelines
UMM Biomass Gasification System

Courtesy of Hammel Green and Abrahamson, Inc.
Transport & Logistics
Grain Transport
Gasification Transport & Logistics

Theoretical = 15 M tons/yr
Actual = 677,000 tons/yr
Contractual = 45,000 tons/yr

Examples:
UMM = 9,000 tons / yr (Stevens County)
CVEC = Estimated 100,000 tons / yr (Swift County)
Biorefinery Transport & Logistics

- **Economical Biorefinery Capacity**
 - for 2000 ton/day [UMM = 36 tons / day]
 - Delivery cost $ 35 / dry ton [$10 / acre for farmers]

- **Production Area and Storage Capacity Required**
 - 6950 square miles, Mean Travel Distance 40 miles (Perlack and Turhollow, 2002)
 - [170 Sq. Mi. Ramsey County to 6,000 Sq. Mi. Saint Louis]
 - 30% Corn acreage, 50% farmer participation
 - **Storage Capacity (300 days)**
 - 1,200 million lbs,
 - 109m cubic feet (Density 11 lbs/cubic feet)
 - 2500 acre.ft (100 acres by 25 ft high)

- **Transportation**
 - Bio-refinery delivery
 - 53 ft truck, 50,000lb Tare (Assuming weight limited truck)
 - 80 trucks per day (year round delivery)
 - 320 trucks per day (3 month harvest/ delivery window)
 - Field Harvest Transportation
 - 3 ton/acre, 8 acres/hr, 10 hours / day.
 - 10 truck loads day (assuming weight limit, i.e. 11-14 lbs/cubic foot)
 - 40 truck loads day (raw density 3-4 lbs/ cubic foot)

Birrell, Iowa State
Transport & Logistics
Transport & Logistics
UMM Biomass Gasification System

Courtesy of Hammel Green and Abrahamson, Inc.
UMM Biomass Gasification System

Courtesy of Hammel Green and Abrahamson, Inc
Impact on Soil, Water, and Air
Biomass Cropping Systems